

SEMINAR School of Mathematics and Statistics

DATE: 9 SEPTEMBER 2019

TITLE

Terms of Binary Recurrence Sequences which are products of factorials

VENUE | TIME

Seminar Room I 03:45 –04:45 PM

Speaker

Prof. Shanta Laishram, Stat Math Unit, Indian Statistical Institute, New Delhi.

ABSTRACT

A conjecture of Hickerson states that the equation $n! = a_1!a_2!\cdots a_k!$ with $2 \le a_k \le a_{k-1} \le \cdots \le a_2 \le a_1 \le n-2$ in positive integers implies $n \le 16$. This is open. For a binary recurrence sequence $\{U_n\}_{n\ge 0}$, we show that the largest n for which $|U_n| = m_1!m_2!\cdots m_k!$ with $1 < m_1 \le m_2 \le \cdots \le m_k$ satisfies $n < 3 \times 10^5$. We also give better bounds in case the roots of the binary recurrence sequence are real. As a consequence, we show that if $\{X_k\}_{k\ge 1}$ is the sequence of X-coordinates of a Pell equation $X^2 - dY^2 = \pm 1$ with a nonsquare integer d > 1, then the equation $X_k = n!$ implies k = 1. This is a joint work with F. Luca and M. Sias.

About the Speaker

Working at Indian Statistical Institute, Delhi Center. Ph.D. from Tata Institute of Fundamental Research (TIFR), Mumbai . Area of interest are Number Theory & Cryptography, Irreducibility of Polynomials, Galois Group Problem, Diophantine Equations & Diophantine Approximation.

Awards : Microsoft Young Faculty Award in 2010–2011 and TAA-Harish Chandra Memorial Award in 2008 for the best Ph.D. Thesis in Mathematics at TIFR Mumbai